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L I N E A R  P R O B L E M  OF A H Y D R O F O I L  M O V I N G  

U N D E R  T H E  F R E E  S U R F A C E  OF A F I N I T E - D E P T H  F L U I D  

S. I. Gorlov UDC 532.59 

A method of solving the plane linear problem of a steady-state irrotationul flow about a body 
under the free surface of a heavy fluid of finite depth is developed. The boundary-value problem 
is formulated for a complex perturbed velocity and is reduced to a singular integral equation 
relative to the intensity of a vortex layer that models the hydrofoil. The kernel of the equation 
is the exact solution of the corresponding boundary-value problem for a vortex of unit intensity. 
The equation is solved by the discrete-vortex method. The effect of the parameters of the problem 
on the hydrodynamic characteristics of the elliptical hydrofoil and the shape of the free surface 
are estimated numerically. 

The problems of the motion of a body under the free surface of a bounded-from-below fluid have found 
many practical applications primarily concerning the design of ships moving in shallow water, and therefore 
many studies have focused on this problem. The first fundamental results were obtained by Tikhonov and 
Haskind [1, 2]. The success in the solution of these problems is connected with the development of numerical 
methods [3]. Bai [4] solved the problem of the motion of an elliptical cylinder and the Joukowski airfoil under 
the free surface of a heavy fluid of finite depth by the finite-element method. The panel method was applied 
by Giesing and Smith [5]. The shapes of the free surface of finite-depth and unbounded-from-below fluids 
were compared, and the wave effect on the distributed hydrodynamic loads was investigated. Using finite 
superelements, Mei and Chen [6] considered the problem of calculation of the wave drag and the lift force 
of a circular cylinder moving in a heavy fluid in the presence of a bottom. The hydrodynamic loads were 
found to undergo a discontinuity near the critical Froude number. For the solution of this problem, Taylor 
and Wu [7] employed the hybrid finite-element method. The flow of a heavy fluid with free surface about an 
elliptical cylinder and a hydrofoil at the angle of attack in the presence of the bottom was studied by Yeung 
and Bouger in [8], where the problem was solved using the method of hybrid boundary integral equations 
and the calculation results for the shape of the free surface and for the distributed and total hydrodynamic 
characteristics of the hydrofoil were given. 

Despite the many studies in this field, a number of questions have not yet been clarified. In particular, 
there are scarce calculated data for assessing the effect of the generated waves on the hydrodynamic response of 
a body. The present work is devoted to the development of a numerical method of calculating the parameters 
of the problem in a wide range of variation and evaluation of the effect of the bottom on the total and 
distributed hydrodynamic characteristics of the hydrofoil. 

We consider the linear problem of the uniform motion of an elliptical hydrofoil L under the free surface 
of a heavy fluid of finite depth. We assume that the fluid is ideal and incompressible. A coordinate system is 
introduced such that the x axis coincides with the unperturbed level of the free surface. The problem is solved 
in the plane of the complex variable z = x + iy. The acceleration of gravity is denoted by g, the density by 
p, the depth by H, the fluid velocity at an infinite distance in front of the hydrofoil by Voo, the principal and 
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TABLE 

y o/v  R /vav  R /vaVs 

0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
oo 

Author [12] 

0.00000 0.00000 
0.00000 0.00000 
0.00692 0.00674 
0.65796 0.65971 
1.02893 1.03159 
0.64416 0.64808 
0.34830 0.34918 
0.18910 0.18957 
0.10607 0.10633 
0.06171 0.06186 
0.03718 0.03726 
0.00000 0.00000 

Author [12] 

0.22920 0.22977 
0.36359 0.36426 
0.40949 0.40374 
0.87618 0.87869 
0.14327 0.14388 

-0.29479 -0.29539 
-0.37174 -0.37257 
-0.35120 -0.35202 
-0.31563 -0.31637 
-0.28421 -0.28488 
-0.25978 -0.26041 
-0.16915 -0.16956 

TABLE 2 

-2.0 
-1.0 
-0.5 

0 
0.5 
1.0 
2.0 
3.0 
4.0 

f(z)/h 

Author [8] 

0.0634 0.0633 
0.1948 0.1945 
0.3244 0.3244 
0.3932 0.3912 
0.2415 0.2411 

-0.0015 -0.0017 
-0.3812 -0.3812 
-0.6429 -0.6419 
-0.8263 -0.8255 

minor semi-axes of the ellipse by a and b, and the distance from the center of the ellipse to the free surface 
by h. 

We introduce the complex velocity "~(z) of the per turbed motion of the fluid. The  function l /(z) should 
be analytical in the domain D: Ix I < +oo and - H  < y < 0, except for the hydrofoil L, and should satisfy the 
following boundary condit ions [9]: 

(1) The consequence of the constant pressure and the zero normal velocity component  on the free 
sur face  

)} , Re ivf"(z = 0 ,  u--~-~-2 for z - -x+iO;  (1) 

(2) The  zero normal  velocity component  at the bo t tom of the fluid 

I m { V ( z ) } = 0  for z = z - i H ;  (2) 

(3) The  no-flow at the  hydrofoil points 

Im{(Voo + l)'(z))e i~ = 0 for z E L, (3) 

where O(z) is the angle between the tangent to L at the point z and the x axis; 
(4) Damping of the  per turbed velocities at an infinite distance in front of the hydrofoil 

lira lY(z) = 0. (4) 

We seek the per tu rbed  complex velocity ~'(z) in the form 

t/(z) = f K(z, ~)7(~)e -i~162 de', (5) 
L 

where 7(r is the intensity of the attached vortex layer modeling the hydrofoil L (~ = r + it/). The  expression 
K(z, ~) obtained in [9] is the  exact solution of the corresponding boundary-value problem (1), (2), and (4) for 
a vortex of unit  intensity and has the form 

1 1 1 1 
g( z ,~ )=  2ri z - ~  2~ri z - ~  + 2Hi 

? , ~  + v sinh (,~(H + ~7)) cos (,~(z - ~ + ill)) e-~H + d~ 

u sinh (AI(H + 7/)) sin (Al(z - ~ + ill)) 
+ (6) 

uH - coshZAt H 
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Fig. 1. Wave resistance D= = Rz/pglra  2 and the lift force Dy = P~/pglra  2 vs. the 
Froude number for b/a = 1, H / a  = 8, and h/a  = 2, 4, and 8 (curves 1-3): solid 
curves refer to the author's results, and the open points to the results of [6]. 

Here AI is the positive root of the equation v tanh AH = A, which exists for vH > 1. 
Thus, the function V(z) satisfies conditions (1), (2), and (4), and the boundary-value problem (1)- 

(4) is reduced to the determination of "r(~) from the solution of the singular integral equation obtained by 
substituting (5) and (6) into (3). The integral equation is solved by the discrete-vortex method. We partition 
the hydrofoil L into elements [zi, zi+I ] of length A i (j  = 1 , . . . ,  N). At the beginning and end of each 
element, two vortices of intensity F i and - F  i axe located. The total vortex intensity is zero, which ensures 
the irrotational flow about the ellipse. We choose the points z0k (k = 1, . . . ,  N) located in the center of the 
elements [z6, z~+l] (k = 1 , . . . ,  N) and require satisfying the no-flow condition (3). According to formula (5), 
the function f'(z) takes the following values at these points: 

f/(zo6) = f K(zo6, ~)7(~)e-ie(Od( ". (7) 
L 

We approximate the integral expression in (7) by the quadrature formula with discrete vortices [10]: 

N 
f g(zok, O~(Oe-~e(r162 = ~ rj(g(z0k, zD - g(zok, zi+1)). (8) 
L jffil 

Substituting (7) and (8) into (3) for z -- z06 (k = 1 , . . . ,  N), we obtain a system of N linear algebraic 
equations relative to the intensities of discrete vortices Fj (j = 1 , . . . ,  N). 

To calculate the improper integral entering expression (6), an effective numerical method, which is 
based on the selection of the singularity from under the sign of the integral and the use of the Gauss and 
Laguerre quadratures [11], is developed. 

After the intensities of the discrete vortices are found, with allowance for (7) and (8), at the hydrofoil 
points z0k (k = 1, . . . ,  N) we find the values of l~'(z) and the pressure p with the use of the Bernoulli integral: 

p(Iv  + - p - p ~  = -~  

where poo is the pressure at an infinitely distant point. 
To calculate the total hydrodynamic characteristics, we suggest a piecewise-constant pressure 

distribution along the hydrofoil L. The formulas for the wave drag Rx, the lift force Ry, and the moment M 
relative to the point ZM = XM + iyM have the form 

N 
nz - i f (p - p~ )  e- ieds  = i ~ (p6 - p ~ )  e-ie~Ak, 

L k= l  

N 
= - f(p-poo)t( - M) cos O + ( 7 - y M )  sin 01 ds = - ~ (Pk --Poo)[(x0k--XM) cos 06+ (Y0k --YM) sin 0k] Ak, M 

L k=l  
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Fig. 2. H y d r o d y n a m i c  characteristics vs. the  Froude number  for an elliptical hydrofoil 
(b/a = 0.5) for H/a = 4, h/a = 1, 2, and 3 (curves 1-3) and h/a = 2, H/a = 4, 8, and 20 
(curves 4-6).  
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Fig. 3. Shape  of the  free surface for b/a = 0.5, h/a = 2, Fr = 0.75, 1.25, 1.75, and 3.25 
(curves 1--4). 
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Fig. 4. Pressure  distr ibut ion over the hydrofoil for b/a = 0.5, h/a = 2, H/a = 4, Fr = 0.75, 
1.25, 1.75, and 3.25 (curve 1 refers to the upper  side of the hydrofoil and curve 2 to the  
lower side). 
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where Pk is the pressure at the point z0k and Ok = 8(zok) (k = 1,. . . ,  N). 
The shape of the free surface is set by the function y = .[(z), where f (z)  = -Re{( / (z )} /v  for z = z+iO. 

Here V(z) is found from (5) with allowance for the quadrature formula (8). 
The basic parameters of the problem are as follows: b/a is the ratio of the semi-axis of the ellipse, h/a is 

the immersion of the ellipse, H/a is the depth of the fluid, and the Froude number is Fr = Voo/x/'~. Based on 
the developed algorithm, we performed a numerical experiment to evaluate the effect of these parameters on 
the wave-drag coefficients Cz = 2R:~/paV~, the lift force Cy = 2Ry/paV~, the moment relative to the center 
of the ellipse Cm = 2M/pa2V~, and the pressure distribution over the hydrofoil and the channel bottom 
cp = (p -  poo)/pv . 

The calculational algorithm was tested by the known exact solution of the problem of an unbounded 
fluid flow about the ellipse. The number of partitions was taken to be equal to 60, and this gave a relative 
calculation error of less than 1% for b/a > 0.1. 

The results were compared with the known solutions of the problem of a flow about a circular cylinder 
under the free surface of a heavy fluid of finite or infinite depth. Table I lists the calculated hydrodynamic 
characteristics of a circular cylinder for a bottomless fluid and the results obtained in [12]; it was assumed in 
the calculations that h/a = 2 and the depth H/a = 20, which corresponds to infinity. For a bottom-restricted 
fluid, Fig. 1 shows the wave drag and the lift force vs. the Froude number Fh = Voo/~/'fF[ and the results of 
[6]. The calculation data for the shape of the free surface and those obtained in [8] for b/a = 1, H/a = 10, 
h/a = 2, and Fh = 0.8 are given in Table 2. The test calculations allow us to conclude that  our results are in 
agreement with the known results. 

The results of the systematic calculations, which were carried out to estimate the effect of hydrofoil- 
generated waves on its hydrodynamic characteristics, are given in Figs. 2-4. 

Figure 2 illustrates the total hydrodynamic characteristics of the elliptical hydrofoil vs. the Froude 
number for various distances of the free surface and various depths of the fluid. Clearly, all the hydrodynamic 
characteristics undergo a discontinuity during the passage through the critical Froude number Fr. (determined 
from the equation vH = 1) whose values for the three depths 4, 8, and 20 are 2, 2.828, and 4.472, respectively. 
As the fluid depth increases, the bottom effect becomes weaker and disappears for H/a = 20. 

The dependence of the  shape of the free surface on the Froude number is plotted in Fig. 3. As the critical 
Froude number is approached, one can observe a boundless increase in the amplitude and the wavelength. 
The calculation of the coefficient Cp at the channel bot tom showed that,  for H/a = 4, both the hydrofoil and 
the waves arising on the free surface contribute to the pressure distribution; the contribution of the waves 
becomes more pronounced as the critical Froude number is approached. For H/a = 8, this effect noticeably 
weakens. The waves arising on the free surface exert a strong effect on the pressure distribution on the upper 
side of the hydrofoil (Fig. 4). 

Based on our numerical experiment, we can draw the following conclusions. The waves generated by 
a hydrofoil moving under the free surface of a heavy fluid of finite depth have a great effect on its total and 
distributed hydrodynamic characteristics. It is manifested particularly markedly in the vicinity of the critical 
Froude numbers, where the solution of the problem within the framework of the linear theory is not acceptable 
and requires an analysis in the nonlinear formulation. The bot tom effect is very strong and disappears only 
for large values of the relative depth of the fluid. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 96-01- 
00093). 

REFERENCES 

. 

2. 

3. 

A. I. Tikhonov, "Plane problem of the motion of a wing under the surface of a heavy fluid of finite 
depth," Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 4, 57-78 (1940). 
M. D. Haskind, "Translational motion of bodies under the free surface of a heavy fluid of finite depth," 
Prikl. Mat. Mekh., 9, 67-78 (1945). 
R. W. Yeung, "Numerical methods in free-surface flows," Ann. Rev. Fluid Mech., 14,395-442 (I982). 

896 



4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

K. J. Bai, "A localized finite-element method for two-dimensional steady potential flows with a free 
surface," J. Ship. Res., 22, No. 4, 216-230 (1978). 
J. P. Giesing and A. M. O. Smith, "Potential flow about two-dimensional hydrofoils," J. Fluid Mech., 
28, No. 1, 113-129 (1967). 
C. C. Mei and H. S. Chen, "A hybrid element method for steady linearized free-surface flows," Int. 
J. Num. Meth. Eng., 10, No. 5, 1153-1175 (1976). 
Taylor R. Eatock and G. X. Wu, "Wave resistance and lift on cylinders by a coupled element 
technique," Int. Shipbuild. Progr., 33, No. 377, 2-9 (1986). 
R. W. Yeung and Y. C. Bouger, "A hybrid integral-equation method for steady two-dimensional ship 

waves," Int. J. Num. Meth. Eng., 14, No 3, 317-336 (1979). 
S. I. Gorlov, "Solution of the linear problems of the uniform motion of a vortex source in a multilayer 
fluid," Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 3, 127-132 (1995). 
S. M. Belotserkovskii and I. K. Lifanov, Numerical Methods in Singular Integral Equations [in Russian], 
Nauka, Moscow (1985). 
S. I. Gorlov, "Plane problem of the motion of a body in a multilayer heavy fluid," Candidate's 
Dissertation in Phys. Math. Sci., Novosibirsk (1995). 
T. I. Khabakhpasheva, "Plane problem of a uniform flow of a two-layer fluid about a circular cylinder," 
Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 91-97 (1996). 

897 


